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The expansion of an orientation distribution function as a linear combination of

the hyperspherical harmonics suggests that the analysis of crystallographic

orientation information may be performed entirely in the axis–angle

parameterization. Practical implementation of this requires an understanding

of the properties of the hyperspherical harmonics. An addition theorem for the

hyperspherical harmonics and an explicit formula for the relevant irreducible

representatives of SO(4) are provided. The addition theorem is useful for

performing convolutions of orientation distribution functions, while the

irreducible representatives enable the construction of symmetric hyperspherical

harmonics consistent with the crystal and sample symmetries.

1. Introduction

The materials science community, for the most part, describes

the orientation of a crystal by a triplet of Euler angles, and an

orientation distribution function (ODF) as a linear combina-

tion of the generalized spherical harmonics (Bunge, 1993).

Although alternative descriptions for the orientations of

individual crystals appear throughout the literature, the

general sentiment of the field has been that there is no alter-

native to the analytical expression of an ODF as a linear

combination of the generalized spherical harmonics. This

continues to encourage the use of Euler angles, despite

repeated observations of the benefits of using the other

descriptions (Grimmer, 1974; Frank, 1988; Heinz & Neumann,

1991; Morawiec & Field, 1996). Recently, Mason & Schuh

(2008) pointed out that an alternative analytical expression for

the ODF could be derived from the description of crystal

orientations as normalized quaternions. By interpreting

quaternions as vectors in a four-dimensional vector space over

the field of real numbers, a collection of crystal orientations

may be mapped to a collection of points residing on the unit

sphere S3 in four dimensions. Since the harmonic functions on

S3 provide a complete orthonormal basis for the expansion of

a square-integrable function, the ODF describing these

orientations is written as a linear combination of harmonic

functions in the form

f ð!; �; ’Þ ¼
P1

n¼0;2...

Pn
l¼0

Pl

m¼�l

zn
l;mZn

l;mð!; �; ’Þ; ð1Þ

where the function Zn
l;mð!; �; ’Þ is one of the hyperspherical

harmonics.1 The index n is restricted to even integers by the

trivial symmetry of three-dimensional space, and the angles

0 � ! � 2�, 0 � � � � and 0 � ’< 2� correspond to the

angle of rotation and the polar and azimuthal angles of the

axis of rotation, respectively, of a rotation of three-

dimensional space.

The fact that equation (1) gives the ODF as a function of

quantities relating directly to the angle and axis of rotation is

one of the more noticeable benefits of this expansion

compared with the generalized spherical harmonic expansion.

A description of rotations by an angle and axis is not only

more intuitive (Frank, 1988), but describing rotation distri-

butions as functions of these quantities allows the derivation

of certain results that are practically inaccessible within the

generalized spherical harmonic formalism. For instance, the

derivation of the misorientation angle distribution function is,

in principle, as simple as writing the expansion of the misor-

ientation distribution function (MDF) and integrating out the

axis information. Nevertheless, analytic expressions for the

misorientation angle distribution function appear in the

literature only for the case of random textures (Handscomb,

1957; Mackenzie, 1958; Grimmer, 1979; Morawiec, 1995). This

absence may historically be attributed to the purely practical

difficulty of separating the misorientation angle dependence

from an MDF expressed as a function of Euler angles,

although calculating the misorientation angle distribution

function from an MDF expressed in the form of equation (1) is

as simple as integrating out the dependence on � and ’.

More generally speaking, while the expansion of an ODF as

a linear combination of basis functions gives an analytical

expression to an otherwise arbitrary square-integrable func-

tion, the main motivation for this technique is that the

expanded function inherits the properties of the basis func-

tions. That is, the expansion allows the well known properties

1 The arrangement of indices on the hyperspherical harmonics differs from
that of Mason & Schuh (2008) owing to the consideration that the index n
identifies the set of hyperspherical harmonics that form a basis for an
irreducible representation of SO(4), while the indices l and m identify
individual members of this set; this difference in significance and function
encourages the separation of n from l and m.



of the basis functions to be used in the analysis of an experi-

mental ODF. Since the use of the hyperspherical harmonics as

basis functions has only recently been proposed, there is a

need to improve our understanding of the properties of the

hyperspherical harmonics and thereby to more completely

realize the utility of the expansion in equation (1).

Specifically, the first purpose of this paper is to derive an

addition theorem for the hyperspherical harmonics. Practi-

cally speaking, the addition theorem simplifies the summation

of products of the hyperspherical harmonics, and is expected

to allow the convolution of ODFs as is required to calculate

distribution functions of orientation differences. The second

purpose of this paper is to provide explicit expressions for the

matrices that determine the effect of rotations on the hyper-

spherical harmonics. Since a three-dimensional rotation of the

sample changes the crystal orientations relative to the refer-

ence orientation, this operation changes the basis functions of

the expansion of the ODF as well. More specifically, a three-

dimensional rotation of the sample engenders a four-

dimensional rotation of the hyperspherical harmonics. The

effect of this rotation on the hyperspherical harmonics is given

in matrix form by the irreducible representatives of SO(4), the

four-dimensional rotation group. An explicit expression for

the irreducible representatives allows, for example, the refer-

ence orientation of a collection of orientation measurements

to be changed in order to clearly reveal the statistical sample

symmetry introduced by the processing history. The irre-

ducible representatives further allow the construction of

symmetric basis functions consistent with the crystallographic

symmetry and the statistical sample symmetry; the expansion

of an ODF as a linear combination of the symmetric hyper-

spherical harmonics is often significantly more efficient than

the expansion in equation (1).

Results corresponding to these for the generalized spherical

harmonics appear in a variety of sources (Bunge, 1993;

Gel’fand et al., 1963; Vilenkin, 1968) and follow directly from

group-theoretical considerations and knowledge of the rela-

tionship of these functions to the irreducible representatives

of SO(3), the three-dimensional rotation group. Furthermore,

restricted forms of the addition theorem for the hyper-

spherical harmonics appear in the quantum-mechanics litera-

ture (Avery & Wen, 1982; Bander & Itzykson, 1966; Domokos,

1967) and the general form of the irreducible representatives

of SO(4) follows from basic considerations of the quantum

theory of angular momentum. Nevertheless, the literature

generally presents these results without following an explicit

(or, in some cases, consistent) set of conventions. To the

author’s knowledge, the results contained herein do not

appear elsewhere in the literature in a form that is consistent

with the conventions of this paper, particularly as they apply

to the field of texture analysis and to the expansion of the

ODF given in equation (1).

2. Conventions

While definitions of the hyperspherical harmonics appear

throughout the literature (Bander & Itzykson, 1966; Bieden-

harn, 1961; Domokos, 1967; Meremianin, 2006), there is no

general agreement on the phase. Since changing the phase of

the hyperspherical harmonics amounts to a similarity trans-

formation of the irreducible representatives of SO(4) for

which these form a basis, some care should be exercised to

ensure that the phase of the hyperspherical harmonics is

consistent with the explicit formula for the irreducible repre-

sentatives of SO(4). Otherwise, these representatives do not

transform the elements of the basis correctly. The definition

and phase convention of the complex hyperspherical harmo-

nics used in this paper is

Zn
l;mð!; �; ’Þ ¼ ð�iÞ

l 2lþ1=2l!

2�
ð2l þ 1Þ

ðl �mÞ!

ðl þmÞ!

ðnþ 1Þðn� lÞ!

ðnþ l þ 1Þ!

� �1=2

� ½sinð!=2Þ�lClþ1
n�lðcosð!=2ÞÞPm

l ðcos �Þ expðim’Þ;

ð2Þ

with integer indices 0 � n, 0 � l � n and �l � m � l, and

where Clþ1
n�l is a Gegenbauer polynomial and Pm

l is an asso-

ciated Legendre function (Bateman & Erdélyi, 1953;

Gradshtein et al., 2000). While different from the convention

of Mason & Schuh (2008), this definition is preferable for the

purposes of this paper and is consistent with the definitions of

the hyperspherical harmonics provided in, e.g., Biedenharn

(1961), Hicks & Winternitz (1971), Muljarov et al. (2000) and

Meremianin (2006).

With respect to the irreducible representatives of the

rotation group, this paper follows the same conventions as

Altmann (1986). That is, a rotation operation is considered as

an active rotation of configuration space, rather than a passive

rotation of the coordinate system. An irreducible repre-

sentative left-multiplies the column vector of the coordinates

of a point and right-multiplies the row vector of the compo-

nents of the basis. With these conventions established, a

formula for the matrix element in row m0 and column m of the

(2l + 1)-dimensional irreducible representative of SU(2) is

found in Appendix A to be

Ul
m0;mð!; �; ’Þ ¼

X
�

X
�

½2ð2�þ 1Þ�1=2�

2l þ 1
Cl;m

l;m0;�;�Z2l
�;�ð!; �; ’Þ;

ð3Þ

with integer or half-integer indices 0 � l, �l � m0 � l and

�l � m � l, and where the properties of the Clebsch–Gordan

coefficients Cl;m
l;m0;�;� constrain the summation indices to the

values 0 � � � 2l and � ¼ m�m0. Wigner (1959), Vilenkin

(1968), Rose (1995) and Varshalovich et al. (2008) provide

some discussion of the definitions and properties of the

Clebsch–Gordan coefficients. The notation for the Clebsch–

Gordan coefficients used in this paper follows that of

Varshalovich et al. (2008). This expansion appears elsewhere

in the literature (Varshalovich et al., 1974, 2008), but does not

seem to be well known.
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3. An addition theorem

The addition theorem derived in this section for the hyper-

spherical harmonics is analogous to the addition theorems for,

e.g., the Gegenbauer polynomials or the associated Legendre

functions, and is used to simplify certain summations of

products of the hyperspherical harmonics. The formula

derives from the observation that if a rotation described by the

parameters !1, �1 and ’1 is followed by a rotation described by

the parameters !2, �2 and ’2, then the result is equivalent to

that of some single rotation described by the parameters !, �
and ’. This is equivalent to the matrix multiplication of the

corresponding irreducible representatives, or

Ul
m0;mð!; �; ’Þ ¼

P
m00

Ul
m0;m00 ð!2; �2; ’2ÞU

l
m00;mð!1; �1; ’1Þ: ð4Þ

Although equation (4) may be expanded with equation (3),

the procedure is simplified by initially applying some of the

symmetry properties of the Clebsch–Gordan coefficients to

equation (3) to obtain

Ul
m0;mð!; �; ’Þ

¼
X
�

X
�

ð�1Þ��þl�m0 ð2Þ
1=2�

ð2l þ 1Þ1=2
C�;�

l;�m0;l;mZ2l
�;�ð!; �; ’Þ: ð5Þ

This is substituted into equation (4) to give

X
�

X
�

ð�1Þ��þl�m0 ð2Þ
1=2�

ð2l þ 1Þ1=2
C�;�

l;�m0;l;mZ2l
�;�

¼
X
m00

X
�2

X
�2

ð�1Þ��2þl�m0 ð2Þ
1=2�

ð2l þ 1Þ1=2
C
�2;�2

l;�m0;l;m00Z
2l
�2;�2

�
X
�1

X
�1

ð�1Þ��1þl�m00 ð2Þ
1=2�

ð2l þ 1Þ1=2
C
�1;�1

l;�m00;l;mZ2l
�1;�1

; ð6Þ

where Z2l
�i;�i

is written for Z2l
�i;�i
ð!i; �i; ’iÞ for the sake of

brevity. After multiplying by the Clebsch–Gordan coefficient

C�0;�0

l;�m0;l;m and summing over the indices �m0 and m, this

becomes

X
�

X
�

ð�1Þ��Z2l
�;�

X
�m0

X
m

C�0;�0

l;�m0;l;mC�;�
l;�m0;l;m

" #

¼
ð2Þ1=2�

ð2l þ 1Þ1=2

X
�2

X
�2

X
�1

X
�1

ð�1Þ��2��1 Z2l
�2;�2

Z2l
�1;�1

�
X
m00

X
�m0

X
m

ð�1Þl�m00
C�0;�0

l;�m0;l;mC
�2;�2

l;�m0;l;m00C
�1;�1

l;�m00;l;m

" #
:

ð7Þ

The quantity in brackets in the first line is ��0;���0;� by the

unitarity of the Clebsch–Gordan coefficients, where � is the

Kronecker delta, while the quantity in brackets in the third

line is found to be (Varshalovich et al., 2008)

X
m00

X
�m0

X
m

ð�1Þl�m00C�;�
l;�m0;l;mC

�2;�2

l;�m0;l;m00C
�1;�1

l;�m00;l;m

¼ ð�1Þ��ð2�2 þ 1Þ1=2
ð2�1 þ 1Þ1=2

C�;�
�2;�2;�1;�1

� �2 �1

l l l

� �
:

ð8Þ

The quantity in braces is the Wigner 6j symbol, and is defined

in, e.g., Wigner (1959) and Varshalovich et al. (2008). Simpli-

fication of the left side of equation (7) and substitution of

equation (8) into the right side of equation (7) gives

Z2l
�;� ¼

ð2Þ1=2�

ð2l þ 1Þ1=2

X
�2

X
�2

X
�1

X
�1

ð�1Þ��2��1 ð2�2 þ 1Þ1=2

� ð2�1 þ 1Þ1=2
Z2l
�2;�2

Z2l
�1;�1

C�;�
�2;�2;�1;�1

� �2 �1

l l l

� �
ð9Þ

as an addition theorem for the hyperspherical harmonics. This

is closely related to an addition theorem for the generalized

characters of the irreducible representations of the rotation

group as reported by Alper (1971) and Varshalovich et al.

(1974), and is a generalization of the more restricted addition

theorems reported by Bander & Itzykson (1966), Domokos

(1967) and Avery & Wen (1982).

4. The irreducible representatives of SO(4)

The effect of a four-dimensional rotation on the hyper-

spherical harmonics is defined by the irreducible representa-

tives of SO(4), with bases given by sets of the hyperspherical

harmonics. The local isomorphism of SO(4) to the direct

product group SUð2Þ � SUð2Þ (Racah, 1959; Biedenharn,

1961; Bander & Itzykson, 1966; Hicks & Winternitz, 1971)

allows the irreducible representatives of SO(4) to be

constructed from the direct product of the irreducible repre-

sentatives of SU(2) (Roman, 1961; Sharp, 1968). A suitable

similarity transformation to the coupled basis by means of the

Clebsch–Gordan coefficients then changes the bases of these

irreducible representatives to sets of the hyperspherical

harmonics. The resulting irreducible representatives of SO(4)

determine the effect of a three-dimensional rotation of the

sample on the hyperspherical harmonic expansion of an ODF,

in view of the considerations in Mason & Schuh (2008).

The purpose of this section is to find an alternative

expression for the (2l + 1)2-dimensional irreducible repre-

sentatives of SO(4), the elements R2l
�0;�0;�;� of which are

constructed in Mason & Schuh (2008) as

R2l
�0;�0;�;�ð!2; �2; ’2; !1; �1; ’1Þ

¼
P
m000

P
m00

P
m0

P
m

C�0;�0

l;m00;l;m0U
l�
m000;m00 ð!2; �2; ’2Þ

� Ul
m0;mð!1; �1; ’1ÞC

�;�
l;m000;l;m; ð10Þ

with integer or half-integer index 0 � l, and integer indices

0 � �0 � 2l, ��0 � �0 � �0, 0 � � � 2l and �� � � � �. The

indices �0 and �0 label the rows of the representative in

increasing values of �0 and in decreasing values of �0 for a
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particular value of �0, while the indices � and � label the

columns of the representative in increasing values of � and in

decreasing values of � for a particular value of �. The

summation indices m000, m00, m0 and m range from �l to l,

subject to the constraints m00 þm0 ¼ �0 and m000 þm ¼ �. The

assertion of the author is that the irreducible representative in

equation (10) of the current paper correctly transforms the

hyperspherical harmonics in equation (2). While an explicit

demonstration of this is not the purpose of the current paper,

this issue will be addressed in future publications.

The irreducible representatives of SU(2) in equation (10)

may be expanded by means of equation (3) to find

R2l
�0;�0;�;� ¼

X
m000

X
m00

X
m0

X
m

C�0;�0

l;m00;l;m0C
�;�
l;m000;l;m

�
X
�2

X
�2

½2ð2�2 þ 1Þ�1=2�

2l þ 1
Cl;m00

l;m000;�2;�2
Z2l�
�2;�2

�
X
�1

X
�1

½2 2�1 þ 1ð Þ�
1=2�

2l þ 1
Cl;m

l;m0;�1;�1
Z2l
�1;�1

; ð11Þ

where Z2l
�i;�i

and R2l
�0;�0;�;� are written for Z2l

�i;�i
ð!i; �i; ’iÞ and

R2l
�0;�0;�;�ð!2; �2; ’2; !1; �1; ’1Þ for the sake of brevity. Since

complex conjugation of equation (2) reveals that

Zn�
l;mð!; �; ’Þ ¼ ð�1ÞlþmZn

l;�mð!; �; ’Þ; ð12Þ

some rearrangement of equation (11) and substitution of

equation (12) gives

R2l
�0;�0;�;�

¼
2�2

ð2l þ 1Þ2

X
�2

X
�2

X
�1

X
�1

ð�1Þ�2þ�2 ð2�2 þ 1Þ1=2

� ð2�1 þ 1Þ1=2
Z2l
�2;��2

Z2l
�1;�1

�
X
m000

X
m00

X
m0

X
m

C�0;�0

l;m00;l;m0C
�;�
l;m000;l;mCl;m00

l;m000;�2;�2
Cl;m

l;m0;�1;�1
:

ð13Þ

The symmetry properties of the Clebsch–Gordan coefficients,

along with substitution of the index ��2 for �2, allow equa-

tion (13) to be written as

R2l
�0;�0;�;�

¼
2�2

ð2l þ 1Þ2

X
�2

X
�2

X
�1

X
�1

ð�1Þ�2��2þ�1

� ð2�2 þ 1Þ1=2
ð2�1 þ 1Þ1=2

Z2l
�2;�2

Z2l
�1;�1

�

�X
m000

X
m00

X
m0

X
m

C�0;�0

l;m00;l;m0C
�;�
l;m000;l;mCl;m00

l;m000;�2;��2
Cl;m0

l;m;�1;��1

�
:

ð14Þ

The quantity in brackets is found to be (Varshalovich et al.,

2008)

X
m000

X
m00

X
m0

X
m

C�0;�0

l;m00;l;m0C
�;�
l;m000;l;mCl;m00

l;m000;�2;��2
Cl;m0

l;m;�1;��1

¼
X

k

X
�

ð2l þ 1Þð2�þ 1Þ1=2
ð2kþ 1Þ1=2

� Ck;�
�2;��2;�1;��1

C�0;�0

�;�;k;�

�0 l l

� l l

k �2 �1

8><
>:

9>=
>;; ð15Þ

where the quantity in braces in equation (15) is the Wigner 9j

symbol, and is defined in, e.g., Wigner (1959) and Varshalovich

et al. (2008). With this, the expression for the matrix element

of the irreducible representative becomes

R2l
�0;�0;�;�

¼
2�2ð2�þ 1Þ1=2

2l þ 1

X
�2

X
�2

X
�1

X
�1

ð�1Þ�2��2þ�1

� ð2�2 þ 1Þ1=2
ð2�1 þ 1Þ1=2

Z2l
�2;�2

Z2l
�1;�1

�
X

k

X
�

ð2kþ 1Þ1=2Ck;�
�2;��2;�1;��1

C�0;�0

�;�;k;�

�0 l l

� l l

k �2 �1

8><
>:

9>=
>;;
ð16Þ

which is an alternative form for the elements of the irreducible

representatives of SO(4) described by equation (10).

5. Implications of the formula for the irreducible
representatives of SO(4)

The utility of equation (16) is that certain properties of the

irreducible representatives of SO(4) follow more readily from

this form than from that provided in equation (10). For

instance, examine the elements of the row identified by the

indices �0 ¼ 0 and �0 ¼ 0. Applying this restriction to equa-

tion (16) gives

R2l
0;0;�;�

¼
2�2ð2�þ 1Þ1=2

2l þ 1

X
�2

X
�2

X
�1

X
�1

ð�1Þ�2��2þ�1

� ð2�2 þ 1Þ1=2
ð2�1 þ 1Þ1=2

Z2l
�2;�2

Z2l
�1;�1

�
X

k

X
�

ð2kþ 1Þ1=2
Ck;�
�2;��2;�1;��1

C0;0
�;�;k;�

0 l l

� l l

k �2 �1

8><
>:

9>=
>;:
ð17Þ

Since the Clebsch–Gordan coefficient C0;0
�;�;k;� is equal to

ð�1Þ�����;k��;��ð2�þ 1Þ�1=2, this simplifies to
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R2l
0;0;�;�

¼
2�2ð2�þ 1Þ1=2

2l þ 1

X
�2

X
�2

X
�1

X
�1

ð�1Þ�þ�2 ð2�2 þ 1Þ1=2

� ð2�1 þ 1Þ1=2Z2l
�2;�2

Z2l
�1;�1

C�;��
�2;��2;�1;��1

�

0 l l

� l l

� �2 �1

8><
>:

9>=
>;; ð18Þ

where the requirement that � ¼ �1 þ �2, as enforced by the

remaining Clebsch–Gordan coefficient, cancels some of the

factors of (�1). This expression is simplified further by

observing that the 9j symbol may be reduced to a 6j symbol

through the relation (Varshalovich et al., 2008)

0 l l

� l l

� �2 �1

8<
:

9=
; ¼ �1ð Þ�þ�2

ð2l þ 1Þ1=2
ð2�þ 1Þ1=2

� �2 �1

l l l

� �
: ð19Þ

This allows equation (18) to be written as

R2l
0;0;�;� ¼

2�2

ð2l þ 1Þ3=2

X
�2

X
�2

X
�1

X
�1

ð2�2 þ 1Þ1=2
ð2�1 þ 1Þ1=2

� Z2l
�2;�2

Z2l
�1;�1

C�;��
�2;��2;�1;��1

� �2 �1

l l l

� �
; ð20Þ

or, once more using the symmetry properties of the Clebsch–

Gordan coefficients,

R2l
0;0;�;� ¼ ð�1Þ��

ð2Þ1=2�

2l þ 1

"
ð2Þ1=2�

ð2l þ 1Þ1=2

X
�2

X
�2

X
�1

X
�1

ð�1Þ�2þ�1

� ð2�2 þ 1Þ1=2
ð2�1 þ 1Þ1=2Z2l

�2;�2
Z2l
�1;�1

� C�;�
�2;�2;�1;�1

� �2 �1

l l l

� �#
: ð21Þ

The quantity in brackets, by the addition theorem provided in

equation (9), is one of the hyperspherical harmonics. That is,

the expression for the elements of the row identified by the

indices �0 ¼ 0 and �0 ¼ 0 of the irreducible representative of

SO(4) defined in equation (10) is given by

R2l
0;0;�;� ¼ ð�1Þ�

ð2Þ1=2�

2l þ 1
Z2l
�;�; ð22Þ

where the arguments !, � and ’ of the hyperspherical

harmonic describe the rotation resulting from following a

rotation described by !1, �1 and ’1 by a rotation described by

!2, �2 and ’2. Similar considerations reveal that the elements

of the column of the irreducible representative identified by

the indices � ¼ 0 and � ¼ 0 may be written as

R2l
�0;�0;0;0 ¼

ð2Þ1=2�

2l þ 1
Z2l�
�0;�0 ; ð23Þ

where the arguments !, � and ’ of the hyperspherical

harmonic describe the rotation resulting from following a

rotation described by !2, �2 and ’2 by a rotation described by

!1, �1 and ’1. The author emphasizes that these results are

obtained much more simply from equation (16) than from

equation (10).

6. Discussion and conclusions

One of the benefits of the hyperspherical harmonic expansion

of an ODF is that this expansion is given in terms of angular

quantities intuitively related to the axis and angle of a rota-

tion, with the practical and mathematical benefits that this

brings. Nevertheless, the utility of this expansion is currently

restricted by our limited understanding of the properties of

the hyperspherical harmonics.

From the definition of the hyperspherical harmonics in

equation (2) and the expansion of the matrix elements of the

irreducible representatives of SO(3) in equation (3), this paper

derives two mathematical results that are expected to

considerably increase the usefulness of the hyperspherical

harmonic expansion. The first of these, given in equation (9), is

an addition theorem for the hyperspherical harmonics. This is

closely related to the generalized spherical harmonic addition

theorem which enables the convolution of ODFs expressed in

the generalized spherical harmonic expansion, and the author

expects that the hyperspherical harmonic addition theorem

will serve a similar purpose. The second result, given in

equation (16), is an analytical form for the irreducible repre-

sentatives of SO(4) that does not require prior construction of

the irreducible representatives of SU(2). This allows certain

properties of the irreducible representatives of SO(4) to be

more easily observed, and provides a route to a deeper

understanding of the matrices required to change the refer-

ence orientation for an ODF in the form of equation (1), or to

construct a basis of symmetric hyperspherical harmonics that

reflects the crystal and sample symmetries, as in Mason &

Schuh (2008).

The author hopes that the results provided in this paper will

increase the utility of the hyperspherical harmonic expansion

presented for the crystallography community, and for the

materials science community as a whole.

APPENDIX A
Determination of the functions Ul

m0;mð!; �; ’Þ

The function Ul
m0;mð!; �; ’Þ is the matrix element in row m0 and

column m of one of the (2l + 1)-dimensional irreducible

representatives of SU(2). An analytical expression for these

functions may be found by converting an expression for the

matrix elements in terms of the Cayley–Klein parameters a

and b into an equivalent expression in terms of the angular

quantities !, � and ’. The formula for the matrix elements of

the irreducible representatives of SU(2) using the Cayley–

Klein parameters is (Wigner, 1959; Vilenkin, 1968; Altmann,

1986; Rose, 1995)
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Rl
m0;m a; bð Þ ¼ ½ l þm0ð Þ! l �m0ð Þ! l þmð Þ! l �mð Þ!�1=2

�
X

k

alþm�kða�Þl�m0�kbm0�mþkð�b�Þk

l þm� kð Þ! l �m0 � kð Þ! m0 �mþ kð Þ!k!
;

ð24Þ

with integer or half-integer indices 0 � l, �l � m � l and

�l � m0 � l. The index m0 labels the rows of the representa-

tive sequentially from l to �l, and m labels the columns

sequentially from l to�l. The index k ranges over all values for

which the factorials are finite. While the meaning and use of

this representative varies subtly among the cited references,

the interpretation of the author follows that of Altmann

(1986).

The conversion from the Cayley–Klein parameters to the

angles !, � and ’ is accomplished by comparing the matrix

elements of the two-dimensional complex representatives of

SU(2) in the respective parameterizations. For the Cayley–

Klein parameters, the constraints of unitarity and unit deter-

minant require the representative to be of the form

R1=2 a; bð Þ ¼
a b

�b� a�

� �
; ð25Þ

where a and b satisfy the condition aj j2þ bj j2¼ 1. The Cayley–

Klein parameters may be written as linear combinations of the

components of a normalized quaternion (Altmann, 1986), and

through them expressed as functions of the rotation angles !, �
and ’ by means of a polar parameterization (Mason & Schuh,

2008). With these relations, the irreducible representative in

equation (25) becomes

U1=2 !; �; ’ð Þ

¼
cosð!=2Þ � i sinð!=2Þ cosð�Þ �i sinð!=2Þ sinð�Þ expð�i’Þ

�i sinð!=2Þ sinð�Þ expði’Þ cosð!=2Þ þ i sinð!=2Þ cosð�Þ

� �
:

ð26Þ

Comparison of the matrix elements of equations (25) and (26)

then allows the Cayley–Klein parameters to be written as

functions of !, � and ’.

The unitarity of R1=2 a; bð Þ in equation (25) indicates, by

inspection, that the inverse of R1=2 a; bð Þ is R1=2 a�;�bð Þ.

Insertion of the quantities a* and �b into equation (24) in the

place of a and b provides

Rl
m0;m a�;�bð Þ ¼ �1ð Þm�m0

Rl
�m;�m0 a; bð Þ ð27Þ

for the matrix elements of the inverse of Rl a; bð Þ. An analo-

gous expression holds for the matrix elements of the inverse of

Ul !; �; ’ð Þ as well. Although other symmetries exist, this one

shall be of particular use in the following.

While an expression for the functions Ul
m0;m !; �; ’ð Þ may be

found by direct substitution of the matrix elements of

U1=2 !; �; ’ð Þ from equation (26) into equation (24), a more

elegant expression may be found by considering the operation

described by the representative Ul !; �; ’ð Þ to be the result of

three distinct rotations (Varshalovich et al., 1974). The first

rotation, described by the representative Ul �; �=2; ’� �=2ð Þ,

brings the point on the sphere described by the spherical

angles � and ’ to the z axis. The second rotation, described by

the representative Ul !; 0; 0ð Þ, performs a rotation by the angle

! about the z axis. The third rotation, described by the

representative Ul �; �=2; ’þ �=2ð Þ, returns the point on the z

axis to the point on the sphere described by the spherical

angles � and ’, and is the inverse of the first rotation. The

representative Ul !; �; ’ð Þ is then constructed as the product of

three representatives by

Ul
m0;m !; �; ’ð Þ ¼

P
m000

P
m00

Ul
m0;m000 �; �=2; ’þ �=2ð Þ

� Ul
m000;m00 !; 0; 0ð ÞUl

m00;m �; �=2; ’� �=2ð Þ;

ð28Þ

with integer or half-integer indices �l � m000 � l and

�l � m00 � l. Observing that the third representative is the

inverse of the first, a symmetry relation equivalent to equation

(27) is used to find

Ul
m0;m !; �; ’ð Þ

¼
P
m000

P
m00
�1ð Þm

000�m0
Ul

m000;m00 !; 0; 0ð ÞUl
�m000;�m0 �; �=2; ’� �=2ð Þ

� Ul
m00;m �; �=2; ’� �=2ð Þ: ð29Þ

Since two of the representatives in equation (29) share the

same arguments, the product of these representatives may be

expanded in a series using the Clebsch–Gordan coefficients

(Wigner, 1959; Vilenkin, 1968; Rose, 1995; Varshalovich et al.,

2008). This gives

Ul
m0;m !; �; ’ð Þ

¼
P
m000

P
m00
�1ð Þm

000�m0Ul
m000;m00 !; 0; 0ð Þ

�
P
�

P
�;�

C�;�
l;�m000;l;m00U

�
�;� �; �=2; ’� �=2ð ÞC�;�

l;�m0;l;m; ð30Þ

with integer indices 0 � � � 2l, �� � � � � and �� � � � �,

and where � ¼ �m000 þm00 and � ¼ �m0 þm.

The quantity Ul
m000;m00 !; 0; 0ð Þ is evaluated by comparing

equation (26) with equation (25), and observing that

a ¼ expð�i!=2Þ and b = 0. Insertion of these quantities into

equation (24) reveals that the individual terms of the

summation therein vanish for k 6¼ 0, and that Ul
m000;m00 !; 0; 0ð Þ

vanishes for m000 6¼ m00. Simplification of the remaining quan-

tity provides the expected result, that

Ul
m000;m00 !; 0; 0ð Þ ¼ �m000;m00 expð�im00!Þ: ð31Þ

With this, the expression for Ul
m0;m !; �; ’ð Þ becomes

Ul
m0;m !; �; ’ð Þ

¼
P
m00
�1ð Þm

00�m0expð�im00!Þ

�
P
�

P
�

C�;0
l;�m00;l;m00U

�
0;� �; �=2; ’� �=2ð ÞC�;�

l;�m0;l;m: ð32Þ

The quantity U�
0;� �; �=2; ’� �=2ð Þ is evaluated similarly.

Comparison of equation (26) with equation (25) indicates

that, for this representative, a ¼ cosð�=2Þ and

b ¼ sinð�=2Þ expð�i’Þ. Substitution into equation (24) yields
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U�
0;� �; �=2; ’� �=2ð Þ

¼ �1ð Þ�
�þ �ð Þ!

�� �ð Þ!

� �1=2

�1ð Þ��! �� �ð Þ!
1þ cos �

2

� ��"

�
1� cos �

1þ cos �

� ���=2X
k

�1ð Þk

�þ �� kð Þ! �� kð Þ! ��þ kð Þ!k!

�
1� cos �

1þ cos �

� �k
#

expði�’Þ ð33Þ

after some rearrangement and collection of terms. The trigo-

nometric functions of half-angles in this equation have been

converted to functions of full angles. Recognizing the quantity

in brackets as the associated Legendre function P��� cos �ð Þ

(Vilenkin, 1968), the function U�
0;� �; �=2; ’� �=2ð Þ is instead

written as

U�
0;� �; �=2; ’� �=2ð Þ ¼

�� �ð Þ!

�þ �ð Þ!

� �1=2

P�� cos �ð Þ expði�’Þ:

ð34Þ

The expression for Ul
m0;m !; �; ’ð Þ then becomes

Ul
m0;m !; �; ’ð Þ

¼
X
�

X
�

�1ð Þ�m0
C�;�

l;�m0;l;m

�� �ð Þ!

�þ �ð Þ!

� �1=2

� P�� cos �ð Þ expði�’Þ
X
m00

�1ð Þm
00

C�;0
l;�m00;l;m00 expð�im00!Þ:

ð35Þ

The symmetry properties of the Clebsch–Gordan coefficients

(Vilenkin, 1968; Rose, 1995; Varshalovich et al., 2008)

allow the factors of �1ð Þ�m0 and �1ð Þm
00

to be cancelled by

rearranging the indices, giving

Ul
m0;m !; �; ’ð Þ

¼
X
�

X
�

�ið Þ
�
Cl;m

l;m0;�;�

2�þ 1

2l þ 1

�� �ð Þ!

�þ �ð Þ!

� �1=2

� P�� cos �ð Þ expði�’Þ i�
X
m00

Cl;m00

l;m00;�;0 expð�im00!Þ

" #
: ð36Þ

The quantity in brackets is referred to as the generalized

character of the irreducible representations of the rotation

group and is written as 	l
� !ð Þ. An alternate expression for this

function is (Varshalovich et al., 2008)

	l
� !ð Þ ¼ 2��!

2l þ 1ð Þ 2l � �ð Þ!

2l þ �þ 1ð Þ!

� �1=2

sin !=2ð Þ½ �
�C�þ1

2l�� cos !=2ð Þð Þ;

ð37Þ

where C�þ1
2l�� cos !=2ð Þð Þ is a Gegenbauer polynomial (Bateman

& Erdélyi, 1953; Gradshtein et al., 2000). Substitution of

equation (37) into equation (36) and some rearrangement

yields

Ul
m0;m !; �; ’ð Þ

¼
X
�

X
�

½2 2�þ 1ð Þ�
1=2�

2l þ 1
Cl;m

l;m0;�;�

(
�ið Þ

�2�þ1=2�!

2�

� 2�þ 1ð Þ
�� �ð Þ!

�þ �ð Þ!

2l þ 1ð Þ 2l � �ð Þ!

2l þ �þ 1ð Þ!

� �1=2

� sin !=2ð Þ½ �
�
C�þ1

2l�� cos !=2ð Þð ÞP�� cos �ð Þ expði�’Þ

)
: ð38Þ

The quantity in braces is the hyperspherical harmonic

Z2l
�;� !; �; ’ð Þ, as defined in equation (2) of the current paper.

This allows a compact expression for the matrix elements in

the form

Ul
m0;m !; �; ’ð Þ ¼

X
�

X
�

½2 2�þ 1ð Þ�
1=2�

2l þ 1
Cl;m

l;m0;�;�Z2l
�;� !; �; ’ð Þ:

ð39Þ

This result is identical to the one obtained for Ul
m0;m !; �; ’ð Þ in

Varshalovich et al. (1974, 2008). This derivation is provided in

the current paper to verify that equation (39) is consistent with

the author’s current conventions.
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